61 research outputs found

    Source Coding When the Side Information May Be Delayed

    Full text link
    For memoryless sources, delayed side information at the decoder does not improve the rate-distortion function. However, this is not the case for more general sources with memory, as demonstrated by a number of works focusing on the special case of (delayed) feedforward. In this paper, a setting is studied in which the encoder is potentially uncertain about the delay with which measurements of the side information are acquired at the decoder. Assuming a hidden Markov model for the sources, at first, a single-letter characterization is given for the set-up where the side information delay is arbitrary and known at the encoder, and the reconstruction at the destination is required to be (near) lossless. Then, with delay equal to zero or one source symbol, a single-letter characterization is given of the rate-distortion region for the case where side information may be delayed or not, unbeknownst to the encoder. The characterization is further extended to allow for additional information to be sent when the side information is not delayed. Finally, examples for binary and Gaussian sources are provided.Comment: revised July 201

    Wiretap and Gelfand-Pinsker Channels Analogy and its Applications

    Full text link
    An analogy framework between wiretap channels (WTCs) and state-dependent point-to-point channels with non-causal encoder channel state information (referred to as Gelfand-Pinker channels (GPCs)) is proposed. A good sequence of stealth-wiretap codes is shown to induce a good sequence of codes for a corresponding GPC. Consequently, the framework enables exploiting existing results for GPCs to produce converse proofs for their wiretap analogs. The analogy readily extends to multiuser broadcasting scenarios, encompassing broadcast channels (BCs) with deterministic components, degradation ordering between users, and BCs with cooperative receivers. Given a wiretap BC (WTBC) with two receivers and one eavesdropper, an analogous Gelfand-Pinsker BC (GPBC) is constructed by converting the eavesdropper's observation sequence into a state sequence with an appropriate product distribution (induced by the stealth-wiretap code for the WTBC), and non-causally revealing the states to the encoder. The transition matrix of the state-dependent GPBC is extracted from WTBC's transition law, with the eavesdropper's output playing the role of the channel state. Past capacity results for the semi-deterministic (SD) GPBC and the physically-degraded (PD) GPBC with an informed receiver are leveraged to furnish analogy-based converse proofs for the analogous WTBC setups. This characterizes the secrecy-capacity regions of the SD-WTBC and the PD-WTBC, in which the stronger receiver also observes the eavesdropper's channel output. These derivations exemplify how the wiretap-GP analogy enables translating results on one problem into advances in the study of the other

    MAC with Action-Dependent State Information at One Encoder

    Full text link
    Problems dealing with the ability to take an action that affects the states of state-dependent communication channels are of timely interest and importance. Therefore, we extend the study of action-dependent channels, which until now focused on point-to-point models, to multiple-access channels (MAC). In this paper, we consider a two-user, state-dependent MAC, in which one of the encoders, called the informed encoder, is allowed to take an action that affects the formation of the channel states. Two independent messages are to be sent through the channel: a common message known to both encoders and a private message known only to the informed encoder. In addition, the informed encoder has access to the sequence of channel states in a non-causal manner. Our framework generalizes previously evaluated settings of state dependent point-to-point channels with actions and MACs with common messages. We derive a single letter characterization of the capacity region for this setting. Using this general result, we obtain and compute the capacity region for the Gaussian action-dependent MAC. The unique methods used in solving the Gaussian case are then applied to obtain the capacity of the Gaussian action-dependent point-to-point channel; a problem was left open until this work. Finally, we establish some dualities between action-dependent channel coding and source coding problems. Specifically, we obtain a duality between the considered MAC setting and the rate distortion model known as "Successive Refinement with Actions". This is done by developing a set of simple duality principles that enable us to successfully evaluate the outcome of one problem given the other.Comment: 1. Parts of this paper appeared in the IEEE International Symposium on Information Theory (ISIT 2012),Cambridge, MA, US, July 2012 and at the IEEE 27th Convention of Electrical and Electronics Engineers in Israel (IEEEI 2012), Nov. 2012. 2. This work has been supported by the CORNET Consortium Israel Ministry for Industry and Commerc

    Capacity of a POST Channel with and without Feedback

    Full text link
    We consider finite state channels where the state of the channel is its previous output. We refer to these as POST (Previous Output is the STate) channels. We first focus on POST(α\alpha) channels. These channels have binary inputs and outputs, where the state determines if the channel behaves as a ZZ or an SS channel, both with parameter α\alpha. %with parameter α.\alpha. We show that the non feedback capacity of the POST(α\alpha) channel equals its feedback capacity, despite the memory of the channel. The proof of this surprising result is based on showing that the induced output distribution, when maximizing the directed information in the presence of feedback, can also be achieved by an input distribution that does not utilize of the feedback. We show that this is a sufficient condition for the feedback capacity to equal the non feedback capacity for any finite state channel. We show that the result carries over from the POST(α\alpha) channel to a binary POST channel where the previous output determines whether the current channel will be binary with parameters (a,b)(a,b) or (b,a)(b,a). Finally, we show that, in general, feedback may increase the capacity of a POST channel
    • …
    corecore